NERSC Role in HEP and Research and Emerging Technologies

Sudip Dosanjh Director

November 27, 2012

Career History

- 1980: Summer Intern at LBL
- 1977-1986: U.C. Berkeley student
- 1986-2012: Sandia National Labs
 - Modeled Three Mile Island on Cray YMPs
 - Massively parallel computing (chemically reacting flows, material science, computational science, algorithms)
 - Computational Science and Applications
 - Extreme-scale Computing
 - Exascale
 - Co-design
 - Computer architectures
 - Algorithms

THE INFLUENCE OF TURBULENCE ON EROSION BY A PARTICLE-LADEN FLUID JET

SUDIP DOSANJH and JOSEPH A. C. HUMPHREY

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (U.S.A.)

(Received July 2, 1984; accepted February 7, 1985)

NERSC Provides Computing for Science

Science

Broad user community

- 4844 users, 663 projects
- 48 states; 65% from universities
- Hundreds of users each day
- ~1500 publications per year

Systems for science

- 1.3PF Hopper + .5 PF clusters
- Services for consulting, data analysis and more

NERSC Has a Broad Range of Computational Problems

Science at Scale

Petaflops to Exaflops

Science through Volume

Thousands to Millions of Simulations

Science in Data

Petabytes to Exabytes of Data

Computational Modeling and Big Data

Large-Scale discovery of Events

- Petascale simulations produce data too large for manual analysis
- Data analysis using new algorithms (FastBit, Machine Learning) discover events

Materials Project

- Tens of thousands of simulations screen materials
- Goal: cut in half the 18 year from design to manufacturing
- Advance machine learning and data systems

Interesting materials...

DOE has Unique Data Challenges

- DOE provides many of the large scale user facilities
- Some are producing Petabytes of data today
- NERSC has about 4 Petabytes of disk and 40 of tape

Petaflops to the People

Vision: Accelerate scientific discovery across a broad community through advanced computing

- Energy efficient computing: Improve application performance per Watt by 100x necessary for exascale
- High throughput computing: Provide tools and infrastructure for ensemble runs and deliver database of results to science community
- Data driven computing: Improve insight through access to and analysis of data from experimental facilities

The Production Facility for DOE SC

NERSC Focus on unique resources

–High end computing systems

 Configured for both large-scale jobs and large numbers of jobs

- -High end storage systems
 - Large shared file system
 - Tape archive
- —Interface to high speed network
 - ESnet 100 Gb/s

Allocate time / storage

–Current processor hours and tape storage

DOE's Changing Computing Priorities

Usage by Science Type as a Percent of Total Usage

ASCR's Computing Facilities

Production Computing at NERSC / LBNL

- 100s of Projects
- Allocations
 - 80% divided and allocated by each Science Office
 - 10% ASCR Leadership Computing Challenge
 - 10% Directors' reserve
- Limited to DOE-relevant science
- Includes storage and computing allocations

Leadership Computing at ANL and ORNL

- 10s of projects
- Allocations
 - 60% by INCITE program managed by ANL/ORNL
 - 30% ASCR Leadership Computing Challenge
 - 10% Director's reserve
- Includes industry and non-DOE applications
- Focused on applications at scale

NERSC is Very Cost Effective Relative to Claresc

Component	Annual Cost
Compute Systems (1.38B hours)	\$181M
HPSS (17 PB)	\$12M
File Systems (2 PB)	\$3M
Total (Annual Cost)	~\$200M

NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011 Amazon pricing dropped 15% in the same period

These are "list" prices, which overestimate cloud costs, but several factors underestimate the cost:

- Doesn't include the measured performance slowdown 2x-50x.
- Only accounts for about 65% of NERSC's \$57M annual budget.
 No consulting staff, no account management, no software support.

Current NERSC Systems

Large-Scale Computing Systems

Hopper (NERSC-6): Cray XE6

- 6,384 compute nodes, 153,216 cores
- 144 Tflop/s on applications; 1.3 Pflop/s peak

Edison (NERSC-7): Cray Cascade

- To be delivered in 2013
- Over 200 Tflop/s on applications, 2 Pflop/s peak

Midrange

140 Tflops total

Carver

- IBM iDataplex cluster
- 9884 cores; 106TF

PDSF (HEP/NP)

~1K core cluster

GenePool (JGI)

- ~5K core cluster
- 2.1 PB Isilon File System

NERSC Global Filesystem (NGF)

Uses IBM's GPFS

- 8.5 PB capacity
- 15GB/s of bandwidth

HPSS Archival Storage

- 240 PB capacity
- 5 Tape libraries
- 200 TB disk cache

Analytics & Testbeds

Euclid

(512 GB shared memory)

Dirac 48 Fermi GPU nodes

Magellan Hadoop

Limitations of Existing Programming Models

- We can run 1 MPI process per core, but there are problems with 6-12+ cores/socket:
 - Insufficient memory: user level data and internal buffers
 - Runtime overheads: copying and synchronization
- OpenMP, Pthreads, or other shared memory models
 - No control over locality, e.g.,
 Non-Uniform Memory Access
 - No explicit memory movement, e.g., accelerators or NVRAM
- Even on petascale systems, tuning is non-obvious

Science

NERSC Roadmap

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

NERSC performance has traditionally grown at 10x every 3-4 years

NERSC-7 Coming Soon

NERSC will install a Cray "Cascade" system in 2013

- First all new Cray design since Red Storm; developed for the DARPA HPCS program (including >\$70M from DOE)
- Intel Processors with >2PF peak performance
- New "Aries" interconnect using a "dragonfly" topology
- 6.5PB storage using Cray Sonexion Lustre appliances

Good match for diverse NERSC user needs

- Both High-throughput and high-concurrency workloads.
- Excellent energy efficiency
 - Allows chiller-less "free cooling" with only 10% "overhead"
- Will deliver ~1B Hopper-equivalent core hours
 - -18

UC's Computational Research and Theory (CRT) Facilities

- Unique energy efficient design from weather / hillside
- Collaborative space for 300
- \$124M UC Project (up \$12M)
- \$20M DOE Project
- 100 MW at Berkeley Lab and space for 2 exascale systems

CRT facility ir

construction

NERSC Plan Will Help Take Science through Technology Transition

NERSC-8 Plans

Goals:

- 10x-50x increase in application performance over Hopper
- Transition to energy-efficient architectures
- High applications performance per watt
- Most energy efficient machine in most energy efficient facility

Plans:

- Production HPC resources for 2015/2016.
- Transition to new energy-efficient architectures on road to exascale
- Collaborate with Trinity/ACES to share expertise, reduce risk, and strengthen SC/ NNSA alliance on road to exascale

Technology Challenges and Strategies

Power Limits Computing Performance Growth

Processor industry running at "maneuvering speed"

- David Liddle

- Power density limits single processor performance
- Strategy: Redesign architecture, memory, software, algorithms for low power and (implied need) resilience

Energy Efficient Computing is Key to Performance Growth

At \$1M per MW, energy costs are substantial

- 1 petaflop in 2010 used 3 MW
- 1 exaflop in 2018 would use 130 MW with "Moore's Law" scaling

This problem doesn't change if we were to build 1000 1-Petaflop machines instead of 1 Exasflop machine. It affects every university department cluster

Measuring Efficiency

One important factor in computing efficiency is utilization

- If we measure productivity by publications...
 - NERSC in 2010 ran at 450 publications per MW-year
- Application performance per Watt

New Processor Designs are Needed to Save Energy

Cell phone processor (0.1 Watt, 4 Gflop/s)

Server processor (100 Watts, 50 Gflop/s)

- Server processors have been designed for performance, not energy
 - Graphics processors are 10-100x more efficient
 - Embedded processors are 100-1000x
 - Need manycore chips with thousands of cores

Where does the Power Go?

The Roofline Performance Model: Understanding Communication Limits

- The flat room is determined by arithmetic peak and instruction mix
- The sloped part of the roof is determined by peak DRAM bandwidth (STREAM)
- X-axis is the computational intensity of your computation

Exascale Programming: Memory System Structure

Known: Communication wall will get worse;

- Optimizing for memory/network more important than ever
- Automatic data movement (caches, VM) can be wasteful
- Autotuning (search) helps reach bandwidth limits

Unknown:

How much explicit memory be management?

What is Manycore?

- NVIDIA, AMD/ATI, Intel MIC, are all Manycore processors
- Case for manycore
 - Many small cores are needed for energy efficiency and power density;
 could have their own PC or use a wide SIMD
 - May need at least one fat core (heterogeneity) for running the OS, etc.
- Local store, explicitly managed memory hierarchy
 - More efficient (get only what you need) and simpler to implement in hardware
- Co-Processor interface and PCI between CPU and Accelerator
 - Market: GPUs are separate chips for specific domains
 - Hoping this will go away
- Transition at NERSC-8, not NERSC-7

NERSC's Computing Strategy

- Two major systems on the floor in steady state
 - Maximize stability and usability rather than peak flops
- Optimization for application performance not peak
 - Procurements done using application benchmarks
- Balance computing with growth in data services
 - Disk, tape, network, data transfer nodes, gateways
- Provide for large jobs and large numbers of jobs
 - Both full OS support and lightweight OS
- Minimize number of technology transitions
 - Need to move to manycore is necessary
 - Transition programming model once and choose carefully

Requirements Gathering Ensures NERSC Meets DOE Needs

How we use your input

- Communicate science needs and impact with case studies
- Direct input into Mission
 Need for NERSC-9 and 10
- Inform priorities for computing, storage, infrastructure
- Inform priorities for staffing and services
- Set clear, quantitative needs

Conclusions

NERSC requirements

- Qualitative requirements shape NERSC functionality
- Quantitative requirements set the performance "What gets measure gets improved"

Goals:

- Your goal is to make scientific discoveries
- Our goal is to enable you to do science

Backup Slides

Performance Growth

Challenges to Exascale

- 1) System power is the primary constraint
- **2) Concurrency** (1000x today)
- 3) Memory bandwidth and capacity are not keeping pace
- 4) Processor architecture is open, but likely heterogeneous
- 5) Programming model heroic compilers will not hide this
- 6) Algorithms need to minimize data movement, not flops
- 7) I/O bandwidth unlikely to keep pace with machine speed
- 8) Resiliency critical at large scale (in time or processors)
- 9) Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally important across scales, e.g., 1000 1-PF machines

Accelerating Remote Display

- Problem: remote display operations are very slow due to network latency.
- Solution: deploy new technology at NERSC that hides network latency in remote display operations to improve user productivity.
- Deployed Summer 2008 to entire NERSC user community.
- Results: improves remote display by a factor of about 10x.

Screenshot of a remote display session running multiple 3D visual data analysis applications.

Berkeley Lab's Big-Data Activities in Biology and Environment

JGI @ NERSC, Genomics pipelines (IMG), Knowledge Base (KBase)

Bioimaging

End-to-end solutions for data management, curation and analysis

Medical record sanitation and analysis

Science in Data: From Simulation to Image Analysis

LBNL Computing on Data key in 4 of 10 Breakthroughs of the decade

3 Genomics problems + CMB

Data rates from experimental devices will require exascale volume computing

- Cost of sequencing > Moore's Law
- Rate from CCDs > Moore's Law
- Computing needs > Data size
- Computer performan < Moore Law

Section Title

Template Info

Fonts

- Title: Helvetica Neue Bold Condensed
- Body: Calibri; bold level 1, regular 2+

Title

- Single line at 32pt.
- Autofit.
- Wraps with proper second line that fits in title box

Theme Colors & Variants

	Back- ground 1	Text 1	Back- ground 2	Text 2	Accent 1	Accent 2	Accent 3	Accent 4	Accent 5	Accent 6
Theme Color										
Lighter 80%										
Lighter 60%										
Lighter 40%										
Darker 25%										
Darker 50%										

Sample Tables

Light Style - Accent 5		

Medium Style - Accent 1	

Sample Chart

Headers, Footers and Dates

- All controlled by "View/Headers and Footers" Menu
- The date appears on the title and handout pages
 - Use "fixed" for a known presentation date.
 - Use "update automatically" to track the current date.
- Footer information appears to the right of the Lab logo
 - Optional. Use for name of presentation, copyright info or other usage designations.
- Notes and handout pages have separate header, footer and date information.
 - Need to set this redundantly

Importing from Existing Presentations

- Works OK if the source presentation used a wellformed template
 - May need to reapply the slide template one or two times.
 - Then correct text size directly or with autofit.
- Doesn't work well if it was manually formatted.
 - Observe text frames after importing
 - May need to cut and paste to the text boxes generated from the master slides.

National Energy Research Scientific Computing Center

Backup Slides Follow Big Logo

- Never have a slide that says "Backup"
 - Especially if the backup slides address issues that you would rather not cover.
 - It will only invite discussion.

Web Color Palette

Primary Color Palette

Slate R11 G33 B57

Mute Turquoise R0 G143 B184

Turquoise R35 G171 B227

Light Grey Blue R210 G227 B235

Secondary Color Palette

Dark Teal R25 G73 B99

Teal R35 G108 B144

Orange R248 G150 B29

Green R34 G146 707

Earlier Web Color Palette

Primary Color Palette

Secondary Color Palette

Neutral Color Palette

Cream	Light Warm Gray	Medium Warm Grey	Dark Teal
R 255 G 247 B 220 HEX fff7dc	R 218 G 218 B 218 HEX dadbda	R 137 G 148 B 150 HEX 899496	R 17 G 71 B 102 HEX 114766

